PS2 Game Development under Linux

Christian Fackroth, Rico Kubitza, Lars Stockmann, Jens Holze, Roland Winkler,
Niklas Rober and Maic Masuch

{nroeber|masuch} @isg.cs.uni-magdeburg.de

Games Group, Department of Simulation and Graphics,
Otto-von-Guericke-University of Magdeburg, Germany

Abstract

We describe the development of a 3D action arcade
game, Magnetic Masters, on the Playstation2 using solely
the PS2 Linux Kit. Motivated by the idea whether or not
it is possible to develop a 3D game using the PS2 Linux
Kit, the development process soon became a struggle be-
tween the limitations caused by the Linux system and the
PS2 hardware. Many challenging low-level problems had
to be solved, in order to complete the initial goal.

Although, it is possible to develop a sophisticated 3D
action game using the Linux Kit on the Playsation2, we en-
countered numerous difficulties. The technical deficiencies
and limitations of the Linux Kit restrict the possibilities by a
large scale. To our best knowledge, Magnetic Masters prob-
ably is the most advanced game existing for the PS2 Linux
system.

1 Introduction

The idea for starting this project was to find out if it is
possible to design and develop a 3D action game using only
the Playstation2 and the Linux Kit. As the Sony PS2 mid-
dleware programm is available only to professional game
developing companies, the PS2 in combination with a Linux
Kit would present an interesting alternative in PS2 game de-
velopment for educational facilities and independent devel-
opers.

Only for a brief period after the launch of the Linux Kit,
Sony supported a PS2 Linux community and several devel-
opers, which were working on supplementary tools for the
PS2 [6], [5]. At this time, Sony also initiated a rendering
contest using the PS2 Linux Kit to show off the potential
inherent in the Playstation2 Linux version. But the major-
ity of these tech-demos were rather minimalistic and ex-
hibited only very simple rendering techniques with just a

few hundred polygons rendered in realtime. All demos that
were available within the Kit as well as from the community
websites, were far away from being considerable as starting
point for game development. This seems a bit weird, as
the Playstation2 is known as a game console with many im-
pressive professional game titles. The only reference about
using the PS2 at a more advanced level is reported by For-
tuna et.al., who used the PS2 Linux Kit for teaching stu-
dents game console programming [8]. Unfortunately, there
are no results from this course in terms of games or game
prototypes.

In this paper we describe our game development process
for the PS2 using Sony’s Linux Kit. Starting with 3D graph-
ics experiments up to the final development of a game en-
gine, that features a graphics system which is able to ren-
der scenes with up to 30.000 polygons with textures, trans-
parency and up to 4 independent light sources interactively
at 30 fps. Furthermore, this engine consist of a sound and
physics subsystem, and a simple artificial intelligence, that
drives the computer controlled opponent. With respect to
all existing demos, our achievements are beyond anything
else available, and the developed game is even challenging
and fun to play. However, the way getting there was long
and very demanding. We were confronted with rather un-
usual PC and console game development problems, which
we will highlight during the discussion of the game engine.

The initial idea of the game is an advancement of the
classic Space War game from Atari [1]. We wanted to
project the game into the 3D realm and instead of orbit-
ing around a sun, the combatants fight inside a huge arena,
orbiting around a giant magnet. Everything in this arena, in-
cluding the ships and the shoots, is affected by the magnetic
field generated by the center magnet. The goal of the game
is, similar to the original version, to shoot at the opponent
and to earn money to outfit the own ship with additional ar-
mor, ammunition or a better jet engine. Once the game is
won, the player can call himself Magnetic Master.

This work is organized as follows: The next section

briefly reviews the hardware components of the PS2 and
the Playstation2 Linux Kit. After this we present a brief
overview of the game concept and discuss in the following
sections the designed game engine with a special focus on
the 3D graphics system. This section also covers details
about the rendering of sound, the aiming mechanism, the
game physics, and additionally, the modelling and design
of the game. In the end we discuss the results achieved, and
conclude with a summary of the game development possi-
bilities using the PS2 Linux Kit.

2 The PS2 Linux Kit

The Playstation2 Linux Kit is an original Sony devel-
oped expansion pack for the PS2, that extends the game sta-
tion by several hardware components and converts it into
a fully functional Linux system. The additional hardware
package consists of a 40 GB hard drive, a memory card,
an USB mouse, a keyboard and a network adaptor. The kit
comes along with a customized RedHat Linux distribution.
The installation of the hardware, as well as the software is
straightforward.

Emotion Engine Graphics Synthesizer

CPU Core VPU | VPU || Graphics [§|64Bitll 16 Parallel Pixel Processors
oee -.. 5
Superscalar Vector |8 Vector
128-bit SIMD Unit Unit
M0 %
% t B
Video Memory
4M multiported embedded
DRAM

BUS 128 Bit

Memory | 10 Ch. IPU [l{e]
Control DMA oipES Interface
ecoder

16 Bit 16 Bit 1/0 Processor 32 Bit 37.5 MHz -
400 400 Sound Chip
MHz MHz 48 Channels DVD - ROM

max 48KHz

MIPS CPU 10
" 34 MHz Circuits
S e (oo
i [PcMeiA |
compabe IEEE-1394

Figure 1. PS2 Block Diagram (after [7])

Although, the system has a similar look and feel com-
pared to a Linux system on a standard PC, the underly-
ing hardware is completely different, which makes the pro-
gramming far more difficult. Figure 1 shows a diagram of
the hardware components of the Playstation2. Interestingly,
the hardware features two main processors, the 300 MHz
Emotion Engine and the 34 MHz IO processor, that work
both independent from each other. These two processors are
connected via a bus system and can work together, but the
necessary compilers are unfortunately not available within
the Linux Kit. Furthermore, the only compiler available
(GCC) was not able to produce PS2 optimized code. Ad-
ditionally, there are two other processors that help to bal-
ance the work load: the Graphics Synthesizer (GS) and a
48 kHz sound chip. These two chips support the two main

processors and are connected via a highspeed rambus sys-
tem. Along the Linux Kit, Sony provides free references
for the Emotion Engine, the Graphics Synthesizer and the
DMA controller, but not for all the other components.

The Linux system itself is a customized RedHat Linux
distribution that consists of the general Linux tools (GNU,
KDE 1.0, Gnome, etc.) and some special libraries and pro-
grams that are necessary to develop applications for the PS2
architecture. The majority of the system is fairly outdated,
and due to the minimalistic Linux system, many applica-
tions run very slow, especially in conjunction with a graphi-
cal user interface (KDE). Internet services, such as SAMBA
and SSH can be used and have proven to be very useful, as
it is possible to control the PS2 over the network. For pro-
gramming purposes, the common compilers and libraries
such as gcc, SDL and PS2GL are available.

Graphics programming with OpenGL is a bit more diffi-
cult on the PS2 using the Linux Kit. The rendering of stan-
dard OpenGL applications is extremely slow, as the entire
rendering is performed in software, thus only very few poly-
gons can be rendered at interactive rates. During the launch
of the PS2 Linux Kit, Sony Entertainment initiated a ren-
dering contest to demonstrate the capabilities of the game
console [4]. The results of this rendering contest were very
elementary (the winner was a demo with just about 2000
polygons). Further examples were found within the PS2
Linux communities [6], [5], but none of them used the true
potential of the Playstation2, that is known from many pro-
fessional developed game titles.

The graphic API of choice was soon to be found as
PS2GL. This API had been specially developed by Sony
Entertainment for the Linux Kit to demonstrate the 3D ca-
pabilities of the PS2 under Linux. In order to use PS2GL as
the main rendering API, several changes on the operating
system had to be made. The first requirement is a patched
Linux Kernel, so that PS2GL is able to allocate and reserve
a locked memory area for its own usage. Using the boot
menu and a memory manager (PS2STUFF), it is possible
to allocate up to 16 MB of main memory for the graphics
subsystem. After several experiments we decided to use
PS2GL for our own implementations for the following rea-
sons:

e The syntax of the API is similar to OpenGL, and there-
fore makes it possible to evaluate parts of the 3D
graphics system on other platforms.

e Nearly all relevant components of the Playstation2
(Vector Units and Graphics Synthesizer) are supported
by PS2STUFF/PS2GL.

e The memory was reserved in advance and provided an
upper limit for the necessary 3D data.

e It was the best solution within our time frame (6
month).

Besides the advantages of PS2GL, there are many draw-
backs with this library. One of the biggest problems was
that only a fraction of the known OpenGL instructions were
supported. This caused several problems during the devel-
opment of the graphics engine, as know and proven to work
algorithms had to be redesigned in order to run on the PS2.
Additionally, as the library was only available as alpha ver-
sion, several major bugs have been found, of which some of
them could be removed only with the assistance of Taylor
Daniels, a developer working for Sony Entertainment and
who initially designed PS2GL. Some of the bigger prob-
lems were a bug in the far-clipping algorithm and too slow
keyboard response functions. As further clipping problems
occurred, the model for the arena was carefully designed
in order to minimize additional near-clipping problems, see
also Figure 2 and Section 4.2.

Figure 2. Arena - minimum Tessellation to avoid bad
Clipping

3 Game Concept

Magnetic Masters was intended to be a classic arcade
style game with fast action. The idea was to develop a fast
arcade game that would benefit from the technical possi-
bilities provided by the PS2. We decided to create a game
similar to the classic 1978 Space Wars from Atari [1]. In
this scenario, two space ships orbit around a planet and try
to shoot each other. As the ships, as well as the shoots,
are dependent on the g-forces from the center object, the
shooting and the steering of the ships have proven to be very
difficult. With the ambition to move the game into the 3D
realm, we first experimented on a PC with the controlling of
such ships in 3D space. As this turned out to be rather dif-
ficult, we decided on using a plane over which the 3D ships
can fly. Although the game still is 3D, the steering and the

physics are only 2D. To make the game more interesting,
we changed the emptiness of space to an arena, the ships to
hovercrafts and the center sun into a giant magnet.

The background story is about a future combat game, in
which pilots act as gladiators and have to fight each other
for the entertainment of a depraved society. As a tribute to
our story we decided to let the player chose one out of four
heros. The opponent ship is controlled by the computers
artificial intelligence. The strength of the characters vary,
and it is possible to play at different levels of difficulty, just
by choosing a different character. Similar to many other
games, the hired gladiator has to be equipped with weapons
and armor in a shop-like system. Here, one can buy addi-
tional equipment such as armor, ammunition or tuned jet en-
gines. It was initially planned to have many different items,
but for sake of time, we limited this to a mini and a plasma
gun at different levels, two types of armor and two differ-
ent jet engines. The computer opponent has the same stock
of weapons but has to chose a different character than the
player. One idea for the shoots was that the weapons should
not just kill the other player, but rather influence and change
his physical attributes.

To win the game, one just needs to win all the duels
to gain the rank of a Magnetic Master. We planned to let
the player compete against more than one opponent in one
level, but again time restrictions did not allow us to im-
plement it, although, it would have been no problem for
the implementation nor the performance of the PS2 system.
Due to time constraints and difficulties in programming the
PS2, many initially designed items had to be left out. Even
though, the game is not as complete as planed, the result is
still very impressive and many people assured us that they
like playing the game. Especially the use of magnetism to
distort the shoots is very challenging.

4 PS2 Game Development

After developing the game concept in theory, we started
experimenting with the PS2 to find out the limitations as
well as the potentials provided by the available hardware.
To get an idea of the technical possibilities, we looked at
several professional games and derived our own expecta-
tions:

e The graphics rendering should support at least 50.000
to 80.000 polygons with textures, transparency and ad-
ditional special effects.

e The sound engine should be able to perform real time
pitching and Doppler sound effects.

e The physics engine should be as realistic as possi-
ble and able to calculate elastic impacts with rotation
transfer in 3-dimensional, magnetic fields.

e The computer controlled opponent (AI) should not just
cheat, but behave as a realistic enemy by only using the
same weapons, vehicles and physical parameters.

Soon, we had to realize that such a game could not be
implemented with the Playstation2 Linux Kit. Due to many
limitations, several adjustments to the original game idea
had to be made, in order to develop a functional 3D arcade
game. Although, some of the original ideas did not make
it into the final implementation, the result is still impressive
and fun to play. The following sections present an overview
of the developed parts of the game engine as well as the
design of the 3D models.

4.1 Game Engine

To drive the game, we designed and developed our own
game engine within the the PS2 Linux Kit. This game en-
gine consist of a graphics and sound subsystem, a simple
physics engine to calculate the magnetic distortions as well
as an aiming mechanism for the computer controlled op-
ponent. The development was sometimes very difficult, as
no additional PS2 hardware documentation (VU Assembler
etc.) was available.

One of the main problems with the game engine was the
exact time synchronization between the graphics and the
sound engine. In fact, this problem turned out to be the most
demanding and time consuming task of the entire project.
As later described in Section 4.1.3, the game physics had
to be synchronized to the sound hardware in order to use
realtime sample pitching effects. Depending on the sound
buffer size, an engine cycle was completed every 11 ms or
every 21 ms. Unfortunately, PS2GL does not implement
an equivalent of the glut Post Redisplay/() function used in
the GLUT enhancements of OpenGL. It is not even possi-
ble to suspend the rendering process, to offer more com-
plex rendering tasks additional time for their calculations.
The PS2GL main loop function initiates the redrawing at
no more than 60 Hz, which is the sync rate of the connected
PAL/NTSC display device. Only if one reaches the limits,
the frame rate will drop to 30 Hz. However, as we had no
control of the rendering process at all, two major problems
occurred:

e Rendering constantly consumes CPU cycles required
by other tasks (Al sound).

e The game runs completely desynchronized, which
results in cycles painted twice, while others being
dropped.

A solution to this problem by changing the main loop of
the graphics rendering system has failed, and only an exten-
sive parameter tuning could help a bit to keep the game at a
stable average frame rate of 30 frames per second.

4.1.1 Graphics Engine

PS2GL works a bit different than the familiar OpenGL. Al-
though, it supports an immediate rendering mode, the max-
imum possible polygon count for rendering at interactive
rates using this technique is limited to just 600. Another
in realtime applications often used rendering technique are
display lists. But as only seven of these are supported by
PS2GL, we decided to discard this technique as well. A
more memory-efficient and faster techniques to display 3D
data are vertex arrays. As these were fortunately supported
by PS2GL, we have chosen this method in our own imple-
mentations for the 3D graphics engine. Nevertheless, sev-
eral limitations still applied with the utilization of vertex
arrays, as we found that PS2GL allows only 49 independent
3D-objects in one scene.

We also evaluated the possibilities of using textures
within PS2GL. Although, the implementation is very effi-
cient, some restrictions apply here as well. PS2GL only
supports a maximum number of 147 different texture maps.
Once the texture memory has been allocated assigned, it can
not be reused by another texture. This is mainly due to an
incomplete development of the PS2GL texture manager.

To overcome these limitations, we used batch-scripts, to
divide the game into small subprograms in order to free up
texture memory. We also found that the number of texture
maps used reduced the maximum number of displayable
polygons. Fortunately, the utilization of textures seems to
have no influence on the overall performance at all. As it
is common practice in game development, we decided to
use textures wherever applicable, to reduce the number of
polygons from our complex models [9].

With the decision on using vertex arrays, the graphics en-
gine has been optimized for using this technology for the 3D
rendering. The model data is stored externally to minimize
compiling time and to maximize the loading efficiency. We
developed a file conversion tool, that extracts all the neces-
sary information from 3ds data files. The engine was opti-
mized on this basis and able to display about 50.000 poly-
gons with illumination and transparency effects at about 25
frames per second. This is also the maximum performance
that can be achieved using the hardware limitations of the
Playstation2 with the Linux Kit and PS2GL (according to
Tyler Daniels) [3]. Interestingly enough, PS2GL does not
support any 2D graphics, therefore all menus and the star
wars intro in the beginning of the game, were designed as
quads with overlayed textures.

4.1.2 Sound Engine

In order to create a compelling arcade game, good sound
and music effects are as important as fancy 3D graphics.
Fortunately, there was a good working multipurpose API
for the PS2 present. SDL (Simple Direct Media Layer)

(a) Floor Texture.

(b) Floor - stepwise Movement.

(c) Floor rendered.

Figure 3. Simulating a static Floor.

is freely available for various platforms and used in many
multimedia applications [2]. From this library we only em-
ployed the functions for loading and the playback of sound.
In comparison to PS2GL, SDL was post version 1.0, and
thus very reliable.

The additional sound processing for Doppler effects re-
quires sample pitching in real-time. This produced in the
first experiments disturbing artifacts, which were caused by
an insufficient hardware timer of the PS2. Therefore, we de-
cided to use the sound hardware as game clock to control the
game. The Playstation2 and the SDL sound API turned out
to be quite powerful in playing sound data. It is no problem
to keep the sound buffer at 512 bytes, which would produce
disturbing buffer underruns on a standard PC. Using a sam-
ple rate of 48 kHz, the buffer has to be filled every 10.7 ms,
therefore giving us a theoretical maximum of 94 game cy-
cles per second.

4.1.3 Aiming Mechanism

From our initial design document, the Al was planned to be
very flexible, giving the computer controlled opponent a dy-
namic behavior that would adequately react on the players
input. Because it is difficult to define tactics in a nonlin-
ear environment, we decided to limit the Al to good aiming
algorithms only.

One of the main problems for computing the AM (aim-
ing mechanism) was the limitation of processing time. Due
to the point-based approach of our magnetic sources, the
environment is neither static nor linear and is constantly
changing. Thus it is not possible to determine the proper
shooting directions analytically. In order to shoot in the
right direction, the AM has to simulate many shots. Us-
ing several approximations it was possible to achieve very
good results. The simulation runs with an increased mag-
netic field and an increased temporal speed. Using this ap-
proach, we were able to reduce the total number of steps and

compute the shoot simulations distributed over three game
cycles. Small imprecisions occur only very close to the cen-
ter magnet. The final AM is efficient enough to compete and
win against human opponents.

4.2 Modelling and Design

The 3D modelling of the arena, the hovercrafts and the
weaponry were accomplished using Cinema4D. The mod-
els were textured and exported as 3ds files and converted
into our own data format. In contrast to modelling for a
standard PC game, many restrictions applied in designing
the models with PS2GL back in mind. The first problem
was the maximum allowed number of polygons, which was
limited to about 30.000.

One of the bigger problems was a bug in the algorithm
for the near clipping plane, which forced a minimum tessel-
lation of the arena in order to draw all polygons (see also
Figures 2 and 3). In this case a polygon is entirely clipped
if only one vertex is outside the viewing frustum. To avoid
this clipping behavior, the polygons need to be subdivided
and designed with a higher tessellation. The floor of the
arena was here the biggest problem. As the camera is al-
ways behind the hovercraft, constant clipping would occur.
In order to circumvent the requirements for a high polygon
tessellation, we had to come up with a trick to create the
illusion of a resting floor, Figure 3.

This could be achieved by using an adaptive floor model,
that is highly tessellated in the center and less at the outer
perimeter, Figure 3(b). Assuming the camera to be always
near the center of the floor, we used a rastered alpha texture
to simulate atmospheric absorption effects, see Figure 3(c).
Additionally, we prevented aliasing effect, which would oc-
cur with an infinitely tiled texture. During the game, the
floor moves along with the hovercraft, not continuously but
stepwise with the step size being the same as the distance in
the raster of the texture, Figure 3(b).

5 Results

Game development on the PS2 using the Linux Kit was
an extremely challenging task. In the end we were able to
develop a game engine which renders 30.000 polygons with
transparency and a maximum of 4 light sources at 30 frames
per second. The sound engine is able to generate realtime
pitching and Doppler effects in stereo with a sound qual-
ity of 48 kHz. The physics engine can calculate 3D im-
pacts close to physical correctness, and the artificial aiming
mechanism is hard enough to fight, without too heavy CPU-
usage. Figures 4(a), 4(b) and 4(c) show different screen-
shots of the final game. The game itself is not to hard for
beginners, but it needs some skill to win the entire battle.
Because of the lack of time, we were not able to include all
ideas from the initial game design document.

More information can be found on our website!. This
includes additional screenshots and videos, as well as the
source code and a demo of the game.

6 Conclusions

To sum it all up: Yes, game development using the PS2
Linux Kit is possible — but with many restrictions and not
to the extend of professional PS2 games. Many restrictions
apply, such as that not the entire hardware is supported and
that many libraries are still in an early alpha stadium and
not further developed.

The results achieved, as discussed in the last section and
throughout the paper, are remarkable, but they were only
possible by using several elaborated tricks and with a lot of
patience in experimenting. With Sony Entertainment hav-
ing ceased the support of the Linux Kit and the Linux PS2
community meanwhile non-existent, we would recommend
to use a different platform for game development. Another
way to summarize our work is to quote the API of PS2GL.:
This is not intended for game development.

7 Acknowledgment

The authors would like to thank Tyler Daniels, the devel-
oper of PS2GL, who assisted us in many ways, and without
whom this work would not have been possible.

References

[1] Atari. SpaceWars, 1978.

[2] S. Community. SDL. Simple Direct Media Layer, 2004.
http://www.libsdl.org.

[3] T. Daniels. eMail Communication, 2004.

'http://yodahome.de/magnetic/

oPTIONS
CREDITS
QUIT

(c) Ingame fight.

Figure 4. The final Game.

[4] S. Entertainment. PS2 Linux Community - Rendering Con-
test, 2003. https://playstation2-1linux.com/

projects/vudemocontest/.
[5] S. Entertainment. PS2 Linux Community, 2004. http://

ps2dev.org/.
[6] S. Entertainment. PS2GL Development Community, 2004.

http://ps2gl.playstation2-linux.com/.
[71 R. Green. Procedural Rendering on Playstation2, 2001.

http://www.gamasutra.com/gdce/2001/green/

green_0l.shtml.
[8] Henry S. Fortuna. Teaching Console Game Programming with

the Sony Playstation2 Linux Kit. In CGAIDE - 5th GameOn
International Conference, pages 365-369, Reading, London,

UK, 2004.
[9] J. Watt and F. Policarpos. 3D Games: Real-Time Rendering

and Software Technology. Addision Wesley, 2002.

