Multidimensional Analysis and Visualization Software for dynamic SPECT

Nikola Riher, Torsten Müller, Anna Cellier, Troy Farncombe, Thomas Strunzho

Univ. of Toronto; MGH, Imaging Group; Univ. of Waterloo; Univ. of Auckland; Univ. of Calgary; Univ. of British Columbia; Univ. of Victoria; Canada; Univ. of British Columbia; Canada; Univ. of Victoria, Canada; MGH, Imaging Research Group, USA; Univ. of Calgary, Canada; Univ. of British Columbia, Canada; Univ. of Victoria, Canada;

Objectives

Our project is to develop tools to aid in the visualization of multidimensional medical data sets. The applications presented here in focus on the visualization of time series with potentially thousands of time points. The applications are oriented to SPECT images but we envision that any data that can be represented as a time series could, in principle, be visualized using our tools. The applications are intended to be useful primarily in the research settings, but there is potential for them to be used in the clinical settings, too. The tools are intended to be useful in particular for those who need to analyze data from dynamic SPECT studies. The applications presented here are focused on the visualization of dynamic SPECT data, and allow the investigator to compare individual sets of data or sets of data selected from a database. This can be used to find patterns in the data or to determine whether there is a significant difference between the data sets.

Background

The application is a tool for the analysis of dynamic SPECT data. It is a part of the Visual Data Explorer (VDE) framework, which is a software development environment for the visualization of large datasets. The framework is designed to be flexible and extendible, allowing for the addition of new visualization techniques and algorithms. The framework is also designed to be user-friendly, allowing for the easy creation and modification of visualizations.

Methods and Design

The primary focus of this work is to develop visualization tools for the analysis of dynamic SPECT data. The tools are designed to be user-friendly, allowing for the easy creation and modification of visualizations. The tools are also designed to be extendible, allowing for the addition of new visualization techniques and algorithms.

Conclusion

The application provides a powerful tool for the analysis of dynamic SPECT data. The tools are designed to be user-friendly, allowing for the easy creation and modification of visualizations. The tools are also designed to be extendible, allowing for the addition of new visualization techniques and algorithms.